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1 Deriving the Quadrotor Camera Manipula-
tor Matrices

In this section, we derive the manipulator matrices for our quadrotor
camera model. At a high level, our strategy will be to relate our
quadrotor camera’s degrees of freedom to our control inputs.

In the derivation that follows, we assume that our quadrotor and
gimbal are kinematically coupled [Kondak et al. 2013], in the sense
that moving the position of the quadrotor also moves the position
of the gimbal. However, we assume that our quadrotor and gimbal
are not dynamically coupled [Kondak et al. 2013], in the sense that
torques acting on the gimbal do not induce reactive torques on the
quadrotor. These assumptions simplify the modeling of our system.
Moreover, we feel they are justified, since in the cameras mounted
on quadrotors tend to be very lightweight relative to the quadrotors
themselves. For example, on our hardware platform, our camera
and gimbal are roughly 25× lighter than our quadrotor.

Relating the Quadrotor’s Position to the Control Inputs We
assume that there are two forces acting on our quadrotor camera:
(1) a thrust force induced by the quadrotor’s propellers; and (2) an
external force that models any other forces acting on the quadro-
tor, such as gravity, wind, and drag. Based on this assumption, we
use Newton’s Second Law to relate the linear acceleration of the
quadrotor in the world frame, p̈, to the control input applied at each
of the quadrotor’s propellers, uq , as follows,

mp̈ = fe +RW,QMfuq (1)

where m is the mass of the quadrotor camera; fe is the external
force; Mf is the matrix that maps the control input at each of
the quadrotor’s propellers into a net thrust force oriented along the
quadrotor’s local y axis; and RW,Q is the rotation matrix that rep-
resents the quadrotor’s orientation in the world frame (i.e., the rota-
tion matrix that maps vectors from the body frame of the quadrotor
into the world frame). We define Mf as follows,

Mf =

0 0 0 0
1 1 1 1
0 0 0 0

 (2)

Relating the Quadrotor’s Angular Acceleration and Angular
Velocity to the Control Inputs We use Euler’s Second Law to
relate the angular acceleration and angular velocity of the quadro-
tor in the body frame, ω̇q and ωq respectively, to the control input
applied at each of the quadrotor’s propellers, uq , as follows,

Iqω̇q + ωq × Iqωq = Mτuq (3)

where Iq is the inertia matrix of the quadrotor camera; and Mτ is
the matrix that maps the control input at each of the quadrotor’s pro-
pellers into a net torque acting on the quadrotor in the body frame.
We define Mτ as follows,

Mτ =

 dsα dsβ −dsβ −dsα
γ −γ γ −γ

−dcα dcβ dcβ −dcα

 (4)
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where d, α, β, and γ are constants related to the physical design of
a quadrotor: d is the distance from the quadrotor’s center of mass
to it’s propellers; α is the angle in radians that the quadrotor’s front
propellers form with the quadrotor’s positive x axis; β is the angle
in radians that the quadrotor’s rear propellers form with the quadro-
tor’s negative x axis; γ is the magnitude of the in-plane torque gen-
erated by the quadrotor propeller producing 1 unit of upward thrust
force; ca = cos a and sa = sin a. Our definition for Mτ as-
sumes: (1) the quadrotor’s propellers are co-planar with its center
of mass; and (2) a constant relationship between the magnitude of
the in-plane torque generated by the quadrotor propeller, and the
magnitude of the upward thrust force generated by the propeller.

Relating the Gimbal’s Angular Acceleration to the Control In-
puts We assume that our 3 degree-of-freedom gimbal is fully ac-
tuated, and has very large actuator limits. Since fully actuated sys-
tems are feedback equivalent [Tedrake 2014] to double integrator
systems, and we assume that our gimbal has very large actuator
limits, we model the gimbal as a double integrator for simplicity.
We relate the angular acceleration of the gimbal in the body frame
of the quadrotor, ω̇g to the feedback linearized [Tedrake 2014] con-
trol input applied at the gimbal, ug , as follows,

ω̇g = ug (5)

Relating Euler Angle Time Derivatives to Angular Velocity and
Angular Acceleration At this point, we have related the angu-
lar velocities and accelerations of our system to our control inputs.
However, to derive the complete equations of motion for our sys-
tem, we need to relate the Euler angle time derivatives of our system
to our control inputs. To do this, we must relate Euler angle time
derivatives to angular velocities and angular accelerations.

Let e = [θ ψ φ]T be a vector of our Euler angles. Let us define
the rotation matrix R in terms of the Euler angles θ, ψ, and φ as
follows,

R = Rψ
yR

θ
zR

φ
x

=

 cψ 0 sψ
0 1 0

−sψ 0 cψ

1 0 0
0 cθ −sθ
0 sθ cθ

cφ −sφ 0
sφ cφ 0
0 0 1

 (6)

where ca = cos(a) and sa = sin(a).

We can straightforwardly compute the time derivative of this ex-
pression to get an (admittedly unpleasant) expression for Ṙ in terms
of our Euler angles and their time derivatives. We omit this step for
brevity.

We make the observation that Ṙ = (ω)×R, where ω is the angu-
lar velocity of a rotating body in the non-rotating frame; and the
notation (a)× refers to the skew-symmetric matrix, computed as a
function of the vector a, such that (a)× b = a × b for all vectors
b.

From the above expression, we immediately get ṘRT = (ω)×.
We observe that the entries of ṘRT are linear in ψ̇, θ̇, and φ̇.
Therefore, there is a matrix A that relates ė to ω as follows,

Aė = ω (7)



We can take the time derivative of both sides of this expression
using the product rule to get the following expression,

Ȧė+Aë = ω̇ (8)

We define the matrix A that relates ė to ω according to the linear
relationship Aė = ω, and its time derivative Ȧ, as follows,

A =

 cψ 0 sψcθ
0 1 −sθ

−sψ 0 cψcθ


Ȧ =

−sψψ̇ 0 −sψsθ θ̇ + cψcθψ̇

0 0 −cθ θ̇
−cψψ̇ 0 −sψcθψ̇ − sθcψ θ̇

 (9)

where ca = cos a and sa = sin a.

Relating the Quadrotor’s Orientation to the Control Inputs
We can rotate equations (7) and (8) into the body frame of the
quadrotor, and substitute them into equation (3), to get the follow-
ing expression for the quadrotor’s rotational dynamics,

Iq(RQ,WȦqėq +RQ,WAqëq) +

RQ,WAqėq × IqRQ,WAqėq = Mτuq
(10)

where eq is the vector of Euler angles representing the quadro-
tor’s orientation in the world frame; RQ,W is the rotation matrix
that maps vectors from the world frame into the body frame of the
quadrotor; and Aq is the matrix that relates the quadrotor’s Euler
angle time derivatives to its angular velocity in the world frame.

Relating the Gimbal’s Orientation to the Control Inputs Sim-
ilarly to our approach in the previous subsection, we can substitute
equation (8) into equation (5) to get the following expression for
the gimbal’s rotational dynamics,

Ȧgėg +Agëg = ug (11)

where eg is the vector of Euler angles representing the orientation
of the gimbal in the body frame of the quadrotor; and Ag is the
matrix that relates the gimbal’s Euler angle time derivatives to its
angular velocity in the body frame of the quadrotor.

Defining the Manipulator Matrices We define the layout of our
degree-of-freedom vector q, and our control vector u, as follows,

q =

 p
eq
eg

 u =

[
uq
ug

]
(12)

Based on this layout, we can express equations (1), (10), and (11)
in manipulator form. In doing so, we get the following expressions
for our quadrotor camera manipulator matrices,

H(q) =

mI3×3 03×3 03×3

03×3 IqRQ,WAq 03×3

03×3 03×3 Ag


C(q, q̇) =03×3 03×3 03×3

03×3 IqRQ,WȦq −
(
IqRQ,WAq ėq

)
×RQ,WAq 03×3

03×3 03×3 Ȧg



G(q) =

 −fe
03×1

03×1


B(q) =

RW,QMf 03×3

Mτ 03×3

03×4 I3×3

 (13)

where 0p×q is the p × q zero matrix; and Ik×k is the k × k iden-
tity matrix. In our definition for the manipulator matrices above,
we assume that fe can depend on q, but cannot depend on q̇. We
make this assumption for simplicity, although it could be relaxed
by making minor modifications to C and G above.

2 Proof that B is Always Full Column Rank

To prove that the matrix B is full column rank, consider the follow-
ing matrix,

M =

[
RW,QMf

Mτ

]
(14)

It will suffice to show that rank(M) = 4. We assume without loss
of generality that 0 < α, β < π

2
and that d, γ > 0. We can clearly

see that rank(Mτ ) = 3.

Suppose for the sake of contradiction that rank(M) = 3. Then we
must be able to represent any row of RW,QMf as a linear combi-
nation of the rows of Mτ . Let the row r = [r r r r] be one such
row of RW,QMf . Representing r as a linear combination of the
rows in Mτ , we get the following system of equations,

r = idsα + jγ − kdcα

r = idsβ − jγ + kdcβ

r = − idsβ + jγ + kdcβ

r = − idsα − jγ − kdcα

(15)

for some i, j, k. Equating the first and last of these equations above,
we get idsα = −jγ. Equating the middle two of these equations
above, we get idsβ = jγ. Substituting these two new expressions
into the first two equations above, we get cα = −cβ . However, this
is only possible if α or β is outside the range (0, π

2
). Since we had

previously assumed that α and β are both inside the range (0, π
2
),

we have arrived at a contradiction. This completes our proof.

3 Empirical Justification for Minimizing the
4th Derivative of 7th Degree Polynomials

In this section, we evaluate alternative polynomial representations
for quadrotor camera paths. We find that minimizing the 4th deriva-
tive of 7th degree piecewise polynomials produces the smoothest
and most reasonably bounded control signals for quadrotors (see
Figures 1 and 2 in this document).

When evaluating alternative polynomial representations, we chose
to limit our experiments to odd degree (i.e., even order) polynomi-
als, since these tend to produce smoother curves than even degree
(i.e., odd order) polynomials [Goshtasby et al. 1990].

Acknowledgements

We thank Tao Du for catching and correcting an error in equation
(9) in this document.

References

GOSHTASBY, A., CHENG, F., AND BARSKY, B. A. 1990. B-spline
curves and surfaces viewed as digital filters. Computer Vision,
Graphics, and Image Processing 52, 2.

KONDAK, K., KRIEGER, K., ALBU-SCHAEFFER, A.,
SCHWARZBACH, M., LAIACKER, M., MAZA, I., RODRIGUEZ-
CASTANO, A., AND OLLERO, A. 2013. Closed-loop behavior
of an autonomous helicopter equipped with a robotic arm for



 x

10
0

10  z10

0
10

  y

0

2

4

6

Synthetic Trajectory

2.0 2.5 3.0 3.5 4.0 4.5
Time (seconds)

5

0

5

10

15

C
o
n
tr

o
l 
S
ig

n
a
l 
(N

e
w

to
n
s)

Ground Truth

2.0 2.5 3.0 3.5 4.0 4.5
Time (seconds)

5

0

5

10

15

C
o
n
tr

o
l 
S
ig

n
a
l 
(N

e
w

to
n
s)

Catmull Rom Spline
(3rd Degree)
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Natural Cubic Spline
(3rd Degree)
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Catmull Rom Spline
(9th Degree)
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Our Method
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Figure 1: Comparison of the quadrotor control signals resulting from different keyframe interpolation methods. We construct a simple
synthetic traejectory (a). We use the control signals required for a quadrotor to follow the synthetic trajectory as ground truth (b). We sample
the synthetic trajectory with 15 evenly spaced keyframes, and we construct an interpolated trajectory from these keyframes using different
interpolation methods. We plot the control signals produced by each interpolation method. We require that the control signals be continuous,
and we prefer control signals that are as close as possible to the ground truth. We show the middle of these control signal plots to highlight
their periodic behavior without boundary artifacts. For each interpolation method, we show the control signal for the front right propeller,
and we indicate the control signal value at each keyframe with a blue dot. 3rd degree Catmull Rom Splines are C1 continuous, and therefore
produce discontinuous control signals (c). Natural Cubic Splines areC2 continuous, and therefore also produce discontinuous control signals
(d). 9th degree Catmull Rom Splines are C4 continuous, so they produce continuous control signals, but with large periodic excursions (e).
Our method is C4 continuous and produces control signals with minimal excursions (f).
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Figure 2: Comparison of the quadrotor control signals resulting from different variations of our method when interpolating the synthetic
trajectory described in Figure 1. We show the middle of these control signal plots to highlight their periodic behavior without boundary
artifacts. For each variation of our method, we show the control signal for the front right propeller, and we indicate the control signal
value at each keyframe with a blue dot. Note that the vertical scaling varies in each subplot, and is different from the vertical scaling in
Figure 1. Minimizing the 4th derivative of 7th degree polynomials (also shown, with different vertical scaling, in Figure 1f in this document)
is the simplest variation of our method that produces smooth and reasonably bounded control signals. Note that C4 continuous position
trajectories are only guaranteed to produce C0 continuous control signals for quadrotors, which is why some of the control signals in this
figure are jagged.
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